
On the use of Differential Calculus

in the resolution of Equations *

Leonhard Euler

§227 That the constitution of an equation can be reduced to the nature of
functions was shown sufficiently enough above already. For, let y denote any
function of x; if one puts y = 0, in this form completely all finite equations,
may they be algebraic or transcendental, are contained. But the equation y = 0
is said to be solved, if that value x is attributed to it which substituted in the
function y actually renders it equal to nothing. But in most cases many of
such values are given for x, which are called the roots of the equation y = 0.
Therefore, if we put that the numbers f , g, h, i etc. are roots of the equation
y = 0, the function y will be of such a nature that, if in it instead of x either f
or g or h or etc., is substituted, it indeed is y = 0.

§227 Therefore, since the function f vanishes, if in it instead of x one puts f
or x + ( f − x), where f is a root of the equation y = 0, it will be by means of
that what we demonstrated about functions above [§48],

0 = y +
( f − x)dy

dx
+

( f − x)2ddy
2dx2 +

( f − x)3d3y
6dx3 + etc.,

from which equation the value of the root f is determined in such a way that,
whatever was put for x and hence the value of the quantities y, dy

dx , ddy
2dx2 etc.

*Original title: “ De Usu Calculi Differentialis in Aequationibus resolvendis“, first published
as part of the book „Institutiones calculi differentialis cum eius usu in analysi finitorum ac
doctrina serierum, 1755“, reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 422 - 445 “,
Eneström-Number E212, translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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were substituted, always the equation expressing the true value of f results.
That this is seen more clearly, let us put that it is

y = x3 − 2x2 + 3x− 4;

it will be

dy
dx

= 3xx− 4x + 3,
ddy
2dx2 = 3x− 2, and

d3y
6dx3 = 1.

Having substituted these values it arises

0 = x3 − 2x2 + 3x− 4 + ( f − x)(3xx− 4x + 3) + ( f − x)2(3x− 2) + ( f − x)3

or having actually done the multiplications

f 3 − 2 f f + 3 f − 4 = 0;

of course the same equation as the propounded one arises which therefore
contains the same roots.

§229 But although this way one does not get to a new equation, from which
the value of the root f can be determined in an easier way, nevertheless
from this extraordinary auxiliary theorems for the invention of roots can be
deduced. For, if for x a value already very close to a certain root was assumed
such that f − x is a very small quantity, then the terms of the equation

0 = y +
( f − x)dy

dx
+

( f − x)2ddy
2dx2 +

( f − x)3d3y
6dx3 + etc.

will converge very rapidly and therefore one will not deviate much from
the truth, if except the first two initial terms all remaining ones are rejected.
Therefore, it will be, if for x a value already close to a certain root of the
equation y = 0 was assumed, approximately

0 = y +
( f − x)dy

dx
or f = x− ydx

dy
,

from which formula an, even though not true, but nevertheless very good
approximate value of the root f will be found, which thereafter again substi-
tuted for x will yield a even better value for f and so on will continuously get
closer to the true value of the root f .
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§230 Therefore, at first the root of all powers of any number can be taken. For,
let the number an + b be propounded, of which the root of the power n shall
to be extracted. Put xn = an + b or xn − an − b = 0 that it is y = xn − an − b; it
will be

dy
dx

= nxn−1,
ddy
2dx2 =

n(n− 1)
1 · 2 xn−2,

d3y
6dx3 =

n(n− 1)(n− 2)
1 · 2 · 3 xn−3 etc.

Hence, if the root in question is put = f that it is f = n
√

an + b, it will be

0 = xn − an − b + n( f − x)xn−1 +
n(n− 1)

1 · 2 ( f − x)2xn−2 + etc.

Therefore, if for x one sets a number already coming close to the value of the
root f in question, which will happen by putting x = a, if b was so a small
number that an + b < (a + 1)n, it will approximately be b = nan−1( f − a) and
hence

f = a +
b

nan−1 ,

whence the value of the root will be known a lot closer. But if we want to take
also the third term that it is

b = nan−1( f − a) +
n(n− 1)

1 · 2 an−2( f − a)2,

it will be

( f − a)2 = − 2a
n− 1

( f − a) +
2b

n(n− 1)an−2

and hence

f = a− a
n− 1

±

√
aa

(n− 1)2 +
2b

n(n− 1)an−2

or

f =
(n− 2)a +

√
aa + 2(n− 1)b : nan−2

n− 1
.

Hence, by means of the extraction of the square root the value of the root f
will be found even closer.
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EXAMPLE

Let us find the square root of any number c or let xx− c = y.

Therefore, put the number very close to the root = a and b = c− aa; because of
aa + b = c and since it is n = 2, the first formula will become f = a + c−aa

2a =
c+aa

2a ; the other gives f =
√

c which is the root in question itself. Therefore,
because the root approximately is = c+aa

2a , write the value itself for a and a
closer root will be f = cc+6aac+a4

4a(c+aa) . For the sake of an example let c = 5, from

the first formula it will be f = 5
2a +

a
2 . Therefore, put a = 2, it will be f = 2.25;

now put a = 2.25, it will be f = 2.236111; further, set a = 2.236111, it will be
f = 2.2360679 which value already hardly deviated from the truth.

§231 But in similar matter the root of any equation can be found approxi-
mately by means of the equation f = x− ydx

dy , after having assumed a value
differing hardly from a certain root of the equation for x, of course.To find a
value of this kind for x, successively put various values for x and from them
chose the one which minimizes the function y, which means indicates the
value closest to zero. So, if it is

y = x3 − 2xx + 3x− 4

having put x = 0 it is y = −4

x = 1 y = −2

x = 2 y = +2,

whence we see that the root is contained within the values 1 and 2 of x.
Therefore, because it is dy

dx = 3xx − 4x + 3, for finding the root f of the
equation x3 − 2xx + 3x− 4 = 0 one will have this equation

f = x− ydx
dy

= x− x3 − 2xx + 3x− 4
3xx− 4x + 3

.

Therefore, let x = 1; it will be f = 1 + 2
2 = 2. Now, put x = 2; it will be

f = 2− 2
7 = 12

7 . Therefore, let x = 12
7 ; it will be f = 12

7 −
104
1701 = 2812

1701 = 1.653.
If we want to proceed further, we will use logarithms more conveniently.
Therefore, put x = 1.653 and it will be
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log x1 = 0.2182729 x1 = 1.653000

log x2 = 0.4365458 x2 = 2.732409

log x3 = 0.6548187 x3 = 4.516673

x3 = 4.516673

3x = 4.959000

And hence

x3 + 3x = 9.475673 3xx + 3 = 11.197227

2xx + 4 = 9.464818 4x = 6.612000

num. = 0.010855 den. = 4.585227

log num. = 8.0356298

log den. = 0.6613608 x = 1.6553000

log fract. = 7.3742690 fraction = 0.002367

f = 1.650633,

which value already comes very close to the true one.

§232 But we will be able to deduce faster approximations from the general
expression. For, because having put any function y = 0, if the root of this
equation was x = f , we will find that it is

0 = y +
( f − x)dy

dx
+

( f − x)2ddy
2dx2 +

( f − x)3d3y
6dx3 + etc.,

let f − x = z, such that the root is f = x + z, and put

dy
dx

= p,
dp
dx

= q,
dq
dx

= r,
dr
dx

= s etc.;

it will be

0 = y + zp +
z2q
2

+
z3r
6

+
z4s
24

+
z5t
120

+ etc.;

5



in this equation having taken any value for x, from which at the same time
y, p, q, r, s etc. are determined, the quantity z must be found, having found
which one will have the root f = x + z of the propounded equation y = 0.
Therefore, will have to focus on the task to find the value of the unknown z
from this equation in the most convenient way possible.

§233 Assume this convergent series for z

z = A + B + C + D + E + etc.

and having done the substitution it will be

y = y

pz = Ap + Bp + Cp + Dp + Ep + etc.

1
2

qz2 = +
1
2

A2q + ABq + ACq + ADq + etc.

+
1
2

BBq + BCq + etc.

1
6

rz3 =
1
6

A3r +
1
2

A2Br +
1
2

A2Cr + etc.

+
1
2

AB2r + etc.

1
24

sz4 =
1
24

A4s +
1
6

A3Bs + etc.

1
120

tz5 =
1

120
A5t + etc.

Hence, one will obtain the following equation
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A = − y
p

B = −yyq
2p3

C = −y3qq
2p5 +

y3r
6p4

D = −5y4q3

8p7 +
5y4qr
12p6 −

y4s
24p5

etc.

and hence it will be

z = − y
p
− y2q

2p3 −
y3qq
2p5 +

y3r
6p4 −

5y4q3

8p7 +
5y4qr
12p6 −

y4s
24p5 − etc.

EXAMPLE

Let this equation be propounded x5 + 2x− 2 = 0.

Therefore, it will be

y = x5 + 2x− 2,
dy
dx

= p = 5x4 + 2,
dp
dx

= q = 20x3,

dq
dx

= r = 60x3,
dr
dx

= s = 120x etc.

But now put x = 1, since this value hardly deviates from the root, it will be

y = 1, p = 7, q = 20, r = 60, s = 120,

whence it will be

z = −1
7
− 10

73 −
200
75 +

10
74 −

5 · 1000
77 +

500
76 −

5
75 + etc.

or

z = −1
7
− 10

73 −
130
75 −

1745
77 − etc.,

and therefore it will be z = 0.18 and the root f = 0.82; if this value is again
substituted instead of x, a root very close to the true one will arise.
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§234 Therefore, we found an infinite series, which expresses the root of any
equation; but it has this inconvenience that then the law of progression is not
plain, and it hence is too complex and not sufficiently useful. Therefore, we
undertake the same task in another way and investigate a more regular series
expressing any root of the propounded equation.

Let as before the equation y = 0 be propounded while y is any function of x
and the question reduces to that the value of x is defined which substituted
for x renders the function y equal to zero. But because y is a function of x,
vice versa x can be considered as function of y and considering it like this the
value of the function x is to be found which it takes, if the quantity y vanishes.
Therefore, if it is propounded to give the value of x which will be the root of
the equation y = 0, since x goes over into f , if one sets y = 0, it will be by
means of that what was demonstrated above [§ 67],

f = x− ydx
dy

+
y2ddx
2dy2 −

y3d3

6dy3 +
y4d4x
24dy4 − etc.,

in which equation the differential dy is set constant. Therefore, if one puts

dx
dy

= p,
dp
dy

= q,
dq
dy

= r,
dr
dy

= s etc.,

having introduced these values, that the consideration of a constant differential
is avoided, it will be

f = x− py +
1
2

qy2 − 1
6

ry3 +
1

24
sy4 − 1

120
ty5 + etc.

§235 Therefore, having attributed any value to x at the same time the values
of y and the quantities p, q, r, s etc. will be determined and having found these
values one will have an infinite series expressing the value of the root f . But if
the equation y = 0 has several roots, then they arise, if different values are
assumed for x; for, because y can take the same value, even though different
values are attributed to x, it is not unexpected that the same series can often
yield several values. To avoid this ambiguity in these cases and to render the
series convergent, for x a value already close to the value of its root, which is
in question, must be assumed. For, this way the value of y will become very
small and the terms of the series will decrease immensely, such that by taking
only a few terms one will already find a sufficiently correct value for f . If
then this value is substituted for x, the quantity y will become a lot smaller
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and the series will converge a lot more and this way the root f immediately
becomes known so accurately that the error will be very small. And hence the
advantages of this expression over the one we found before is manifestly seen.

§236 Let us put that the root of the power n of any number N is to be
extracted. Therefore, having taken an approximate power of the exponent
n the propounded number will easily be resolved into this for N = an + b.
Therefore, it will be

xn = an + b and y = xn − an − b,

whence it is

dy = nxn−1dx and
dx
dy

= p =
1

nxn−1

dp = − (n− 1)dx
nxn and

dp
dy

= q = − n− 1
nnx2n−1

dq =
(n− 1)(2n− 1)dx

nnx2n and
dq
dy

= r =
(n− 1)(2n− 1)

n3x3n−1

dr = − (n− 1)(2n− 1)(3n− 1)dx
n3x3n and

dr
dy

= s = − (n− 1)(2n− 1)(3n− 1)
n4x4n−1

etc.

Now, put x = a and it will be y = −b and the root in question f = n
√

an + b
will be expressed this way

f = a+
b

nan−1 −
(n− 1)bb

n · 2na2n−1 +
(n− 1)(2n− 1)b3

n · 2n · 3na3n−1 −
(n− 1)(2n− 1)(3n− 1)b4

n4 · 2n · 3n · 4na4n−1 + etc.

and so the same series arises which is usually found by expansion of the
binomial (an + b)

1
n .

§237 Therefore, after in the actual extraction the approximate root a was
found and at the same time the residue b was found then to the root addi-
tionally the value b

ann−1 is to be added, that a root closer to the true one is
obtained. But it will be
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an−1 =
N − b

a
because of N = an + b. But this way a root larger than the correct one will be
found, since the third term must be subtracted. Therefore, to find a root a lot
closer to the true one by means of division of the residue b, a suitable divisor
must be investigated, which shall be assumed to be

nan−1 + αb + βbb + γb3 + etc.

Therefore, because it must be

b
nan−1 + αb + βb2 + γb3 + etc.

=
b

nan−1 −
(n− 1)bb
2n2a2n−1 +

(n− 1)(2n− 1)b3

6n3a3n−1 − (n− 1)(2n− 1)(3n− 1)b4

24n4a4n−1 + etc.,

it will be having done the multiplication nan−1 + αb + βb2 + γb3 + etc.

b = b− (n− 1)bb
2nan +

(n− 1)(2n− 1)b3

6n2a2n − (n− 1)(2n− 1)(3n− 1)b4

24n3a3n + etc.

+
αb2

nan−1 − (n− 1)αb3

2n2a2n−1 +
(n− 1)(2n− 1)αb4

6n3a3n−1

+
βb3

nan−1 − (n− 1)βb4

2n2a2n−1

+
γb4

nan−1

Hence, the following determinations are deduced

α =
n− 1

2a

β =
(n− 1)α

2nan − (n− 1)(2n− 1)
6nan+1 = − (n− 1)(n + 1)

12nan+1

γ =
(n− 1)β

2nan − (n− 1)(2n− 1)α
6nna2n +

(n− 1)(2n− 1)(3n− 1)
24n2a2n+1 =

(n− 1)(n + 1)
24na2n+1 .

Therefore, the fraction to be added to the already found root a will be

b

nan−1 + (n−1)b
2a − (nn−1)bb

12nan+1 + (nn−1)b3

24na2n+1 − etc.
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§238 Therefore, if the square root of the number N is to be extracted and
already the approximate root was found = a together with the residue = b, to
the found root one additionally has to add the quotient, which arises, if the
residue b is divided by

2a +
b

2a
− bb

8a3 +
b3

16a5 − etc.

But if the cube root must be extracted, then the residue must be divided by

3a2 +
b
a
− 2bb

9a4 +
b3

9a7 − etc.,

the use of which formulas we will show in these examples.

EXAMPLE 1

Extract the square root of the number 200.

Put N = 200 and because the closest square is 196, it will be a = 14 and the
residue b = 4, which therefore must be divided by

28 +
1
7
− 1

7 · 196
+

1
7 · 196 · 98

,

and therefore the divisor will be = 28.142135; if 4 is divided by it, one will
obtain a decimal fraction to be added to 14, which will correct up to 10 figures
and further.

EXAMPLE 2

To extract the cube root of the number N = 10.

The closest cube is 8 and the residue is = 2, whence a = 2 and b = 2 and
the divisor = 12 + 1− 1

18 = 12.9444. Hence, the cube root in question will
approximately be = 2 2

12.9444 = 2 10000
64722 .

§239 The series found for the root can also be considered as a recurring series,
arising from a certain fraction. For, this way many terms of the series will be
reduced to a lot less, which constitute the numerator and the denominator
of the fraction. So, having paid a little attention, one will see that it will be
approximately
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(a + b)n = an ·
a + n+1

2 b
a− n−1

2 b

and even closer

(a + b)n = an ·
aa + n+2

2 ab + (n+1)(n+2)
12 bb

aa− n−2
2 ab + (n−1)(n−2)

12 bb
.

In similar manner by introducing several terms even more accurate fractions
can be obtained:

(a + b)n = an ·
a3 + n+3

2 a2b + (n+3)(n+2)
10 ab2 + (n+3)(n+2)(n+1)

120 b3

a3 − n−3
2 a2b + (n−3)(n−2)

10 ab2 − (n−3)(n−2)(n−1)
120 b3

.

Even a more general form of this kind be exhibited, to express which conveni-
ently let be

A =
m(n + m)

1 · 2m
A =

m(n−m)

1 · 2m

B =
(m− 1)(n + m− 1)

2(2m− 1)
A B =

(m− 1)(n−m + 1)
2(2m− 1)

A

C =
(m− 2)(n + m− 2)

3(2m− 2)
B C =

(m− 2)(n−m + 2)
3(2m− 2)

B

D =
(m− 3)(n + m− 3)

4(2m− 3)
C D =

(m− 3)(n−m + 3)
4(2m− 3)

C

etc. etc.

But having determined these values it will be

(a + b)n = an · am + Aam−1b +Bam−2b2 + Cam−3b3 + etc.
am −Aam−1b +Bam−2b2 − Cam−3b3 + etc.

§240 Therefore, if here for n a fractional number is substituted, these formu-
las will be very suitable for the extraction of roots. So if any root of power n
must be extracted of the form an + b, the following formulas can be used

(an + b)
1
n = a · 2nan + (n + 1)b

2nan + (n− 1)
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(an + b)
1
n = a · 12n2a2n + 6n(2n + 1)anb + (2n + 1)(n + 1)bb

12n2a2n + 6n(2n− 1)anb + (2n− 1)(n− 1)bb
.

But if one puts an + b = N that it is an = N − b, it will be

(an + b)
1
n = a · 2nN − (n− 1)b

2nN − (n + 1)b

(an + b)
1
n a · 12n2N2 − 6n(2n− 1)Nb + (2n− 1)(n− 1)bb

12n2N2 − 6n(2n + 1)Nb + (2n + 1)(n + 1)bb
.

§241 Therefore, the general formula for finding the root of any equation in
equation, which consist of several terms, have the same use, which the usual
rule of a binomial yields for the resolution of the pure equations xn = c, and
therefore in this case goes over into that rule itself. But if the equation was
affected or even transcendental, our general expression is always used with
the same success and yields an infinite series, which exhibits the value of the
root. Therefore, since the greatest power of this formula consists in this task,
let us show its use a little more diligently. Therefore, let this affected equations
consisting of three terms be propounded

xn + cx = N

while c and N denote any given quantities. Put xn + cx− N = y; it will be
dy = (nxn−1 + c)dx and hence it will be p = 1

nxn−1+c ; then it is

dp = −n(n− 1)xn−2dx
(nxn−1 + c)2 and q = −n(n− 1)xn−2

(nxn−1 + c)3 .

In similar manner because of r = dq
dy , s = dr

dy etc. one will find

r =
n2(n− 1)(2n− 1)x2n−4 − n(n− 1)(n− 2)cxn−3

(nxn−1 + c)5

s =
−n3(n− 1)(2n− 1)(3n− 1)x3n−6 + 4n2(n− 1)(n− 2)(2n− 1)cx2n−5 − n(n− 1)(n− 2)(n− 3)c2xn−4

(nxn−1 + c)7

t =

{
n4(n− 1)(2n− 1)(3n− 1)(4n− 1)x4n−8 − n3(n− 1)(n− 2)(2n− 1)(29n− 11)cx3n−7

+n2(n− 1)(n− 2)(2n− 1)(11n− 29)c2x2n−6 − n(n− 1)(n− 2)(n− 3)(n− 4)c3xn−5

}
(nxn−1 + c)9

etc.
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Having found these values the root of the propounded equation will be

f = x− py +
1
2

qyy− 1
6

ry3 +
1
24

sy4 − 1
120

ty5 + etc.;

for, whatever is substituted for x, whence at the same time the letters y, p, q, r
etc, obtain determined values, the sum of the series will become equal to the
value of one single root.

EXAMPLE 1

Let this equation be propounded x3 + 2x = 2.

It will be c = 2, N = 2 and n = 3 and y = x3 + 2x− 2. Put x = 1; it will be
y = 1 and

p =
1
5

, q = − 6
53 , r =

78
55 , s = −16 · 90

57 etc.

and the root of the equation will be

f = −1
5
− 3

53 −
13
55 −

60
57 − etc. = 0.771072.

Now put x = 0.77, and since it is y = x3 + 2x− 2,

p =
1

3xx + 2
, q = −6p3x, r = 90xxp5 − 12p5

and

s = −2160p7x3 + 720p7x,

by using logarithms one will have

log x1 = 9.8864907 x1 = 0.77

log x2 = 9.7729814 x2 = 0.5929

log x3 = 9.6594721 x3 = 0.456533

2x = 1.54

x3 + 2x = 1.996533

Therefore y = −0.003467
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And furthermore

log(−y) = 7.5399538 3xx + 2 = 3.7787

log p = 9.4226575 log(3xx + 2) = 0.5773424

log(−py) = 6.9626113 −py = 0.000917511

log p3 = 8.2679725

log x = 9.8864907

log 3 = 0.4771213

log y2 = 5.0799076

log
(
− 1

2 qyy
)

= 3.7114921 − 1
2 qyy = 0.000000514

Therefore, the root is f = 0.770916997, which hardly deviates from the truth
in the last figure.

EXAMPLE 2

Let the equation x4 − 2xx + 4x = 8 be propounded.

Put y = x4 − 2xx + 4x− 8; it will be dy = 4dx(x3 − x + 1),

p =
1

4(x3 − x + 1)
,

dp
dx

=
−3xx + 1

4(x3 − x + 1)2 .

Therefore,

q =
−3xx + 1

16(x3 − x + 1)3 ,
dq
dx

=
21x4 − 12xx− 6x + 3

16(x3 − x + 1)4 and r =
21x4 − 12xx− 6x + 3

64(x3 − x + 1)5 etc.,

from which the root of the propounded equation will be

f = x− y
4(x3 − x + 1)

− (3xx− 1)yy
32(x3 − x + 1)3 −

(7x4 − 4xx− 2x + 1)y3

128(x3 − x + 1)5 − etc.

Therefore, it is necessary to attribute a suitable value to x, that series becomes
convergent. But at first it is perspicuous, if such a value would be attributed to
x, that it would be x3− x + 1 = 0, that then all terms of there series except the
first would become infinite and nothing can be concluded from this. Therefore,
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it is convenient to assign such a value of x that both y becomes small and
x3 − x + 1 not very large. Let x = 1; it will be y = −5 and

f = 1 +
5
4
− 25

16
+

125
64
− etc.;

because the three terms 5
4 −

25
16 +

125
64 agree with the terms of the geometric

progression, whose sum is 5
9 , it will approximately be f = 14

9 . Therefore, let
us put x = 3

2 ; it will be

y = −23
16

and x3 − x + 1 =
23
8

,

whence it is

f =
3
2
+

1
8
− 1

64
+

391
256 · 529

− etc. = 1.61.

Now put x = 1.61; it will be

log x = 0.2068259 x = 1.61 let x3 − x + 1 = z

log x2 = 0.4136518 x2 = 2.5921

log x3 = 0.6204777 x3 = 4.173281

log x4 = 0.8273036 x4 = 6.718983

hence

log(−y) = 8.4016934 y = − 0.025217

log z = 0.5518502 z = 3.563281

log −y
z = 7.8498432

log 4 = 0.6020600

log −y
4z = 7.2477832 −y

4z = 0.0017692

log(3xx− 1) = 0.8309926 3xx− 1 = 6.7763

log y2 = 6.8033868

7.6343794

log z3 = 1.6555506

5.9788288

log 32 = 1.5051500
(3xx− 1)2y2

32z3 = 0.00002976

= 4.4736788

16



Therefore f = 1.6117662.

§242 This method to find the roots of equations approximately extends to
transcendental quantities the same way. Let us find the number x, whose
logarithm to the number itself has a given ratio as 1 to n, and one will have
this equation x− n log x; but let k be the modulus of these logarithms, such
that these logarithms are obtained, if the hyperbolic logarithms are multiplied
by k; it will be d. ln x = kdx

x . Therefore, put x − n log x = y and let f be the
value of f in question which renders x = n log x. Therefore, because it is
y = x− n log x, it will be

dy = dx− kndx
x

=
dx(x− kn)

x
and

dx
dy

= p =
x

x− kn
, whence dp = − kndx

(x− kn)2 ,

therefore

dp
dy

= q =
−knx

(x− kn)3 , dq =
2knxdx + k2n2dx

(x− kn)4

dq
dy

= r =
knx(2x + kn)
(x− kn)5 .

Hence, it will be

f = x− xy
x− kn

− knxyy
2(x− kn3)

− knxy3(2x + kn)
6(x− kn)5 − etc.

Below [§ 272] we will show that this problem only admits a solution, if kn > e
while e is the number, whose hyperbolic logarithm is = 1, or it must be
kn > 2.7182818.

EXAMPLE

A number except 10 shall be found, whose tabulated logarithm becomes equal to the
tenth part of the number itself.

17



Since the question is about tabulated logarithms, it will be k = 0.43429448190325
and because of n = 10 one will have kn = 4.3429448190325. Now, having put
x = 1 it will be y = 1 and it will become

f = 1 +
1

3.3429
+

2.1714724
(3.3429)3 − etc.

and so it will approximately be f = 1.37. Therefore, set x = 1.37; it will be
log x = 0.136720567156406 and because of y = x− 10 log x it will be

y = 0.00279432843594 and − x + kn = 2.9729448190325.

Therefore, let

log x = 0.1367205

log y = 7.4462773

7.5829978

log(kn− x) = 0.4731866

7.1098112
−xy

x− kn
= 0.00128769

Further, because the third term is − knxyy
2(x−kn)2 = kny

2(x−kn)2 · −xy
x−kn , it will be

log
−xy

x− kn
= 7.1098112

log y = 7.4462773

log kn = 0.6377842

5.1938727

log(kn− x)2 = 0.9463732

4.2474995

log 2 = 0.3010300

log third term = 3.9464695

I. term x = 1.37

II. term = 0.00128769

III. term = 0.00000088

f = 1.37128857

log f = 0.137128857
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§243 If the equation was an exponential equation, it can be reduced to any
logarithmic one; so, if the value of x is in question, that it is xx = a, it will be
x ln x = ln a. Hence, having put y = x ln x− ln a it will be

dy = dx ln x + dx and
dx
dy

= p =
1

1 + ln x
and then

dp =
−dx

x(1 + ln x)2 and
dp
dy

= q =
−1

x(1 + ln x)3 ,

dq =
dx

xx(1 + ln x)3 +
3dx

xx(1 + ln x)4 and hence
dq
dy

= r =
1

xx(1 + ln x)4 +
3

xx(1 + ln x)5 ;

further, it will be

dr =
−2dx

x3(1 + ln x)4 −
10dx

x3(1 + ln x)5 −
15dx

x3(1 + ln x)6 ,

therefore

s =
−2

x3(1 + ln x)5 −
10

x3(1 + ln x)6 −
15

x3(1 + ln x)7

and

t =
6

x4(1 + ln x)6 +
40

x4(1 + ln x)7 +
105

x4(1 + ln x)8 +
105

x4(1 + ln x)9 ,

u =
−24

x5(1 + ln x)7 −
196

x5(1 + ln x)6 −
700

x5(1 + ln x)9 −
1260

x5(1 + ln x)10 −
945

x5(1 + ln x)11 .

Therefore, if the true value of x is = f , such that f f = a, it will be

f = x− y
1 + ln x

− yy
2x(1 + ln x)3 −

y3

2xx(1 + ln x)5 −
5y4

8x3(1 + ln x)7 −
7y5

8x4(1 + ln x)9

− y3

6x2(1 + ln x)4 −
5y4

12x3(1 + ln x)6 −
7y5

8x4(1 + ln x)8

− y4

12x3(1 + ln x)5 −
y5

3x4(1 + ln x)7

− y5

20x4(1 + ln x)6

etc.
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Therefore, this expression continued to infinity, whatever value is set for x,
having taken y = x ln x − ln a will give the true value of f . So, if one puts
x = 1, it will be y = − ln a and

f = 1 + ln a− (ln a)2

2
+

2(ln a)3

3
− 9(ln a)4

8
+

32(ln a)5

15
− 625(ln a)6

144
− etc.,

where it is to be noted that ln a is the hyperbolic logarithm of a.

EXAMPLE

Find the number f that it is f f = 100.

Because it is

a = 100 and y = x ln x− ln a = x ln x− ln 100,

since it is clear that it is f > 3 and < 4, put x = 7
2 and it will be

log x = 1.25276296849

x log x = 4.38467038972

log 100 = 4.60517018599

y = −0.22049979627

1 + log x = 2.25276296849.

Hence, by using ordinary logarithms it will be

log(−y) = 9.3434083

log(1 + log x) = 0.3527156
−y

1 + log x
= 0.0978797

8.9906927

log y2 = 8.6868166

3 log(1 + log x) = 1.0581468

7.6286698

log 2x = log 7 = 0.8450980
y2

2x(1 + log x)3 = 0.0006075.

6.7835718
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Therefore, it will approximately be f = 3.5972722;

but having additionally taken the following terms, it will be f = 3.5972852.

§244 But moreover differential calculus has an extraordinary use in the
resolution of equations, if a certain relation, which intercedes between the
roots, was known. Let the equation y = 0 be propounded, in which y shall
be any function of x. If now, for the sake of an example, it is known that the
roots of this equation differ by the given quantity a, these two roots will easily
be found the following way. Let x denote the smaller of these two roots; the
larger will be = x + a; hence, because the function y vanishes, if x denotes
any of the roots of the equation y = 0, it will also vanish, if instead of x one
puts x + a. Therefore, it will be

0 = y +
ady
dx

+
a2ddy
2dx2 +

a3d3y
6dx3 + etc.

Hence, because it is y = 0, it will also be

0 =
ady
dx

+
a2ddy
2dx2 +

a3d3y
6dx3 + etc.

which two equations taken at the same time by the method of elimination
will give the value of the root x, which is smaller than the other root by the
quantity a.

EXAMPLE

Let this equation x5 − 24x4 + 49xx− 36 = 0 be propounded, which is known from
anywhere to have two roots differing by the unity.

Having put y = x5 − 24x3 + 49xx− 36 it will be
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dy
dx

= 5x4 − 72x2 + 98x

ddy
2dx2 = 10x3 − 72x + 49

d3y
6dx3 = 10x2 − 24

d4y
24dx4 = 5x

d5y
120dx5 = 1.

But because of a = 1 it will be

A · · · 5x4 + 10x3 − 62x2 + 31x + 26 = 0.

But it is

B · · · x5 − 24x3 + 49xx− 36 = 0.

Multiply the superior by x and the inferior by 5 and subtract the one from the
other and it will remain

10x4 + 58x3 − 214x2 + 26x + 180 = 0

or
C · · · 5x4 + 229x3 − 107x2 + 13x + 90 = 0,

from which the first A subtracted will give

D · · · 19x3 − 45x2 − 18x + 64 = 0.

D · 5x · · · 95x4 − 225x3 − 90x2 + 320x = 0.

A · 19 · · · 95x4 + 190x3 − 1178x2 + 589x + 494 = 0.

E · · · 415x3 − 1088x2 + 269x + 494 = 0.

D · 415 · · · 7885x3 − 18675x2 − 7470x + 26560 = 0.

E · 19 · · · 7885x3 − 20672x2 + 5111x + 8386 = 0.

F · · · 1997x2 − 12581x + 17174 = 0.
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And

D · 247 · · · 4693x3 − 11115x2 − 4446x + 15808 = 0

D · 32 · · · 13280x3 − 34816x2 + 8608x + 15808 = 0

8587x3 − 23701x2 + 13054x = 0

G · · · 8587x2 − 23701x + 13054 = 0

F · 8587 · · · 17148239x2 − 108033047x + 147473138 = 0

G · 1997 · · · 17148239x2 − 47330897x + 26068838 = 0

60702150x − 121404300 = 0.

From this equation it follows x = 2 and therefore also x = 3 will be a root of
the equation, both of which values indeed satisfy the equation.

§245 But this operation can be done without use of differential calculus,
because the same equation, which the differential calculus yielded, arises, if
in the propounded equation one puts x + 1 instead of x. Furthermore, this
method of elimination is too laborious, and if the equations would be of
higher degree, the labor would be simply too much to handle; and this holds
even more for transcendental equations. But if we put that two roots of the
propounded equation y = 0 are equal to each other, then because of x = a
the differential equations goes over into this one dy

dx = 0. Therefore, if any
equation y = 0 had two equal roots, it will be dy

dx = 0 and these two roots
taken together will yield the value of x, to which these two roots are equal.
Hence, vice versa, if the two equations y = 0 and dy

dx = 0 have a common root,
it will be a double root of the equation y = 0. But this happens, if, after the
quantity x by means of these two equations y = 0 and dy

dx = 0 was completely
eliminated, one gets to an identical equation. So if the equation

x3 − 2xx− 4x + 8 (1)

was propounded, it will also be 3xx− 4x− 4 = 0, whose double added to the
first gives

x3 + 4xx− 12x = 0 or xx + 4x− 12 = 0,

whose triple is
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3xx + 12x − 36 = 0

subtract 3xx − 4x − 4 = 0

16x − 32 = 0

x − 2 = 0.

Therefore, because x = 2 arose, substitute this value in one of the preceding
3xx− 4− 4 = 0 and the identical equation 12− 8− 4 = 0 will arise, whence
one concludes that the propounded equation x3 − 2xx − 4x + 8 = 0 has to
equal roots, namely x = 2.

§246 If one therefore has an algebraic equation of no matter how many
dimensions

xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc. = 0,

which has two equal roots, it will also be

nxn−1 +(n− 1)Axn−2 +(n− 2)Bxn−2 +(n− 3)Cxn−4 +(n− 4)Dxn−5 + etc. = 0.

This double root of that equation will at the same time be a root of the first
equation, of course. Multiply the first equation by n and from it subtract the
second multiplied by x and this new equation will arise

Axn−1 + 2Bxn−2 + 3Cxn−3 + 4Dxn−4 + etc. = 0.

Now add the first multiplied by a and the latter multiplied by b; it will be

axn + (a + b)Axn−1 + (a + 2b)Bxn−2 + (a + 3b)Cxn−3 + etc. = 0,

which equation combined with the propounded itself will show equal roots,
if the propounded one has some. Therefore, because the quantities a and b
can be taken ad libitum, the coefficients a, a + b, a + 2b etc. represent any
arithmetic progression. Therefore, if any equation has to equal roots, they will
be found, if the single terms of the propounded equation are multiplied by
terms of a certain arithmetic progression, respectively; for, the new equation
resulting this way will also contain the root, which is contained twice in the
propounded one. So, if the the terms of the equation
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xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc.

are multiplied by this arithmetic progression

a, a + b, a + 2b, a + 3b, a + 4b etc.;

this new equation will arise

axn +(a+ b)Axn−1 +(a+ 2b)Bxn−2 +(a+ 3b)xn−2 +(a+ 3b)Cxn−3 + etc. = 0,

which combined with the latter will show the equal roots. And this is the
sufficiently known rule to find equal roots of any equation.

§247 If the equation y = 0 has three equal roots, it will not only be dy
dx = 0,

but it will also be ddy
dx2 = 0, if for x one sets the value of the root, which is in

the equation y = 0 trice. To show this let us put that the equation y = 0 has
three roots x, x + a, x + b etc.,of which the first differs to the other ones by a
and b, respectively; and since y vanishes, if instead of x one writes x + a or
x + b, it will be

y = 0

y+
ady
dx

+
a2ddy
2dx2 +

a3d3y
6dx3 +

a4d4y
24dx4+etc. = 0

y+
bdy
dx

+
b2ddy
2dx2 +

b3d3y
6dx3 +

b4d4y
24dx4+etc.= 0;

if from the two latter ones the first is subtracted, it will be

dy
dx

+
addy
2dx2 +

a2d3y
6dx3 +

a3d4y
24dx4+etc.= 0

dy
dx

+
bddy
2dx2 +

b2d3y
6dx3 +

b3d4y
24dx4+etc.= 0

Also subtract these from each other and having divided by a− b it will be

ddy
2dx2 +

(a + b)d3y
6dx3 +

(aa + ab + bb)d4y
24dx4 + etc. = 0.
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Now put a = 0 and b = 0 such that these three roots are equal to each other,
and because of the vanishing terms it will be

y = 0,
dy
dx

= 0 and
ddy
dx2 = 0.

§248 Therefore, if the equation y = 0 has three equal roots, say f , f , f , then
this quantity f will also be a root not only of this equation dy

dx = 0, but also of
this one ddy

dx2 = 0. Hence, it is manifest, because f is the common root of the

equation dy
dx = 0 and its differential ddy

dx2 = 0, that it has to be contained twice

in the equation dy
dx = 0 by means of that what we showed before about two

equal roots of equations. Hence, if the equation

xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc. = 0

contains three equal roots f , f , f , if its terms are multiplied by the terms of a
certain arithmetic progression, then the resulting equation will have two equal
roots f and f ; therefore, it can be multiplied by an arithmetic progression
again, that an equation arises containing the root f once. Therefore, one will
obtain three equations having the common roots f , from whose combination
this root will easily be found. For, if arithmetic progressions of such a kind
are chosen, whose either first or last terms shall be = 0, then an equation of
one degree lower will arise and so the elimination will become even easier.

§249 In similar manner it will be shown, if the equation y = 0 has four equal
roots f , f , f , f , that than for x = f will not only become y = 0, dy

dx = 0 and
ddy
dx2 = 0, but it will also be d3y

dx3 = 0. As the equation y = 0 contains the root

x = f four times, so the equation dy
dx will contain the same trice, the equation

ddy
dx2 = 0 twice and the equation d3y

dx3 = 0 once. This will also be seen easier, if
we consider that the function y in this case has to have a form of this kind
(x− f )4X, where X denotes any function of x. Having assumed this form it
will be

dy
dx

= (x− f )3
(

4X +
(x− f )dX

dx

)
and hence be divisible by (x− f )3. Similarly further ddy

dx2 will have the factor

(x− f )2 and d3y
dx3 the factor x− f ; from this it is perspicuous, if the root f is
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contained in the equation y = 0, it has to be contained in the equation dy
dx = 0

trice, in the equation ddy
dx2 = 0 twice and in d3y

dx3 = 0 still once.
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